The neutral, hydrophobic isoleucine at position I521 in the extracellular S4 domain of hERG contributes to channel gating equilibrium.

نویسندگان

  • Ying Dou
  • Samuel J Goodchild
  • Robert Vander Velde
  • Yue Wu
  • David Fedida
چکیده

The human ether-a-go-go related (hERG) potassium channel has unusual functional characteristics in that the rates of channel activation and deactivation are much slower than inactivation, which is attributed to specific structural elements within the NH2 terminus and the S1-S4 voltage-sensing domains (VSD). Although the charged residues in the VSD have been extensively modified and mutated as a result, the role and importance of specific hydrophobic residues in the S4 has been much less explored in studies of hERG gating. We found that charged, but not neutral or hydrophobic, amino acid substitution of isoleucine 521 at the outer end of the S4 transmembrane domain resulted in channels activating at much more negative voltages associated with a marked hyperpolarization of the conductance-voltage (G-V) relationship. The contributions of different physicochemical properties to this effect were probed by chemical modification of channels substituted with cysteine at position I521. When positively charged reagents including tetramethyl-rhodamine-5-maleimide (TMRM), 1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)oxazol-2-yl] pyridinium methane-sulfonate (PyMPO), [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET), and 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) were bound to the cysteine, I521C channels activated at more negative membrane potentials. To examine the contributions to hERG gating of other residues at the outer end of S4 (520-528), we performed a cysteine scan combined with MTSET modification. Only L520C, along with I521C, shows a substantial hyperpolarizing shift of the G-V relationship upon MTSET modification. The data indicate that the neutral, hydrophobic residue I521 at the extracellular end of S4 is critical for stabilizing the closed conformation of the hERG channel relative to the open state and by comparison with Shaker supports the alignment of hERG I521 with Shaker L361.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating Charges in the Activation and Inactivation Processes of the hERG Channel

The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to ad...

متن کامل

The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of th...

متن کامل

The Role of the Putative Inactivation Lid in Sodium Channel Gating Current Immobilization

We investigated the contribution of the putative inactivation lid in voltage-gated sodium channels to gating charge immobilization (i.e., the slow return of gating charge during repolarization) by studying a lid-modified mutant of the human heart sodium channel (hH1a) that had the phenylalanine at position 1485 in the isoleucine, phenylalanine, and methionine (IFM) region of the domain III-IV l...

متن کامل

Mapping of interactions between the N- and C-termini and the channel core in HERG K+ channels.

The characteristic gating properties of the HERG [human eag (ether-a-go-go)-related gene] potassium channel determine its contribution to cardiac repolarization and in setting the electrical behaviour of a variety of cells. In the present study we analysed, using a site-directed cysteine and disulfide chemistry approach, whether the eag/PAS (Per/Arnt/Sim) and proximal domains at the HERG N-term...

متن کامل

Regional specificity of human ether-a'-go-go-related gene channel activation and inactivation gating.

Slow activation and rapid C-type inactivation produce inward rectification of the current-voltage relationship for human ether-a'-go-go-related gene (hERG) channels. To characterize the voltage sensor movement associated with hERG activation and inactivation, we performed an Ala scan of the 32 amino acids (Gly(514)-Tyr(545)) that comprise the S4 domain and the flanking S3-S4 and S4-S5 linkers. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 305 4  شماره 

صفحات  -

تاریخ انتشار 2013